3.8 \(\int \frac{A+B \log (e (\frac{a+b x}{c+d x})^n)}{(a g+b g x)^4} \, dx\)

Optimal. Leaf size=183 \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{3 b g^4 (a+b x)^3}-\frac{B d^2 n}{3 b g^4 (a+b x) (b c-a d)^2}-\frac{B d^3 n \log (a+b x)}{3 b g^4 (b c-a d)^3}+\frac{B d^3 n \log (c+d x)}{3 b g^4 (b c-a d)^3}+\frac{B d n}{6 b g^4 (a+b x)^2 (b c-a d)}-\frac{B n}{9 b g^4 (a+b x)^3} \]

[Out]

-(B*n)/(9*b*g^4*(a + b*x)^3) + (B*d*n)/(6*b*(b*c - a*d)*g^4*(a + b*x)^2) - (B*d^2*n)/(3*b*(b*c - a*d)^2*g^4*(a
 + b*x)) - (B*d^3*n*Log[a + b*x])/(3*b*(b*c - a*d)^3*g^4) - (A + B*Log[e*((a + b*x)/(c + d*x))^n])/(3*b*g^4*(a
 + b*x)^3) + (B*d^3*n*Log[c + d*x])/(3*b*(b*c - a*d)^3*g^4)

________________________________________________________________________________________

Rubi [A]  time = 0.151906, antiderivative size = 183, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {2525, 12, 44} \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{3 b g^4 (a+b x)^3}-\frac{B d^2 n}{3 b g^4 (a+b x) (b c-a d)^2}-\frac{B d^3 n \log (a+b x)}{3 b g^4 (b c-a d)^3}+\frac{B d^3 n \log (c+d x)}{3 b g^4 (b c-a d)^3}+\frac{B d n}{6 b g^4 (a+b x)^2 (b c-a d)}-\frac{B n}{9 b g^4 (a+b x)^3} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x)^4,x]

[Out]

-(B*n)/(9*b*g^4*(a + b*x)^3) + (B*d*n)/(6*b*(b*c - a*d)*g^4*(a + b*x)^2) - (B*d^2*n)/(3*b*(b*c - a*d)^2*g^4*(a
 + b*x)) - (B*d^3*n*Log[a + b*x])/(3*b*(b*c - a*d)^3*g^4) - (A + B*Log[e*((a + b*x)/(c + d*x))^n])/(3*b*g^4*(a
 + b*x)^3) + (B*d^3*n*Log[c + d*x])/(3*b*(b*c - a*d)^3*g^4)

Rule 2525

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{(a g+b g x)^4} \, dx &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{3 b g^4 (a+b x)^3}+\frac{(B n) \int \frac{b c-a d}{g^3 (a+b x)^4 (c+d x)} \, dx}{3 b g}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{3 b g^4 (a+b x)^3}+\frac{(B (b c-a d) n) \int \frac{1}{(a+b x)^4 (c+d x)} \, dx}{3 b g^4}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{3 b g^4 (a+b x)^3}+\frac{(B (b c-a d) n) \int \left (\frac{b}{(b c-a d) (a+b x)^4}-\frac{b d}{(b c-a d)^2 (a+b x)^3}+\frac{b d^2}{(b c-a d)^3 (a+b x)^2}-\frac{b d^3}{(b c-a d)^4 (a+b x)}+\frac{d^4}{(b c-a d)^4 (c+d x)}\right ) \, dx}{3 b g^4}\\ &=-\frac{B n}{9 b g^4 (a+b x)^3}+\frac{B d n}{6 b (b c-a d) g^4 (a+b x)^2}-\frac{B d^2 n}{3 b (b c-a d)^2 g^4 (a+b x)}-\frac{B d^3 n \log (a+b x)}{3 b (b c-a d)^3 g^4}-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{3 b g^4 (a+b x)^3}+\frac{B d^3 n \log (c+d x)}{3 b (b c-a d)^3 g^4}\\ \end{align*}

Mathematica [A]  time = 0.184807, size = 145, normalized size = 0.79 \[ -\frac{\frac{B n \left ((b c-a d) \left (11 a^2 d^2+a b d (15 d x-7 c)+b^2 \left (2 c^2-3 c d x+6 d^2 x^2\right )\right )-6 d^3 (a+b x)^3 \log (c+d x)+6 d^3 (a+b x)^3 \log (a+b x)\right )}{(b c-a d)^3}+6 \left (B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A\right )}{18 b g^4 (a+b x)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(a*g + b*g*x)^4,x]

[Out]

-(6*(A + B*Log[e*((a + b*x)/(c + d*x))^n]) + (B*n*((b*c - a*d)*(11*a^2*d^2 + a*b*d*(-7*c + 15*d*x) + b^2*(2*c^
2 - 3*c*d*x + 6*d^2*x^2)) + 6*d^3*(a + b*x)^3*Log[a + b*x] - 6*d^3*(a + b*x)^3*Log[c + d*x]))/(b*c - a*d)^3)/(
18*b*g^4*(a + b*x)^3)

________________________________________________________________________________________

Maple [F]  time = 0.437, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( bgx+ag \right ) ^{4}} \left ( A+B\ln \left ( e \left ({\frac{bx+a}{dx+c}} \right ) ^{n} \right ) \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^4,x)

[Out]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^4,x)

________________________________________________________________________________________

Maxima [B]  time = 1.26343, size = 583, normalized size = 3.19 \begin{align*} -\frac{1}{18} \, B n{\left (\frac{6 \, b^{2} d^{2} x^{2} + 2 \, b^{2} c^{2} - 7 \, a b c d + 11 \, a^{2} d^{2} - 3 \,{\left (b^{2} c d - 5 \, a b d^{2}\right )} x}{{\left (b^{6} c^{2} - 2 \, a b^{5} c d + a^{2} b^{4} d^{2}\right )} g^{4} x^{3} + 3 \,{\left (a b^{5} c^{2} - 2 \, a^{2} b^{4} c d + a^{3} b^{3} d^{2}\right )} g^{4} x^{2} + 3 \,{\left (a^{2} b^{4} c^{2} - 2 \, a^{3} b^{3} c d + a^{4} b^{2} d^{2}\right )} g^{4} x +{\left (a^{3} b^{3} c^{2} - 2 \, a^{4} b^{2} c d + a^{5} b d^{2}\right )} g^{4}} + \frac{6 \, d^{3} \log \left (b x + a\right )}{{\left (b^{4} c^{3} - 3 \, a b^{3} c^{2} d + 3 \, a^{2} b^{2} c d^{2} - a^{3} b d^{3}\right )} g^{4}} - \frac{6 \, d^{3} \log \left (d x + c\right )}{{\left (b^{4} c^{3} - 3 \, a b^{3} c^{2} d + 3 \, a^{2} b^{2} c d^{2} - a^{3} b d^{3}\right )} g^{4}}\right )} - \frac{B \log \left (e{\left (\frac{b x}{d x + c} + \frac{a}{d x + c}\right )}^{n}\right )}{3 \,{\left (b^{4} g^{4} x^{3} + 3 \, a b^{3} g^{4} x^{2} + 3 \, a^{2} b^{2} g^{4} x + a^{3} b g^{4}\right )}} - \frac{A}{3 \,{\left (b^{4} g^{4} x^{3} + 3 \, a b^{3} g^{4} x^{2} + 3 \, a^{2} b^{2} g^{4} x + a^{3} b g^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^4,x, algorithm="maxima")

[Out]

-1/18*B*n*((6*b^2*d^2*x^2 + 2*b^2*c^2 - 7*a*b*c*d + 11*a^2*d^2 - 3*(b^2*c*d - 5*a*b*d^2)*x)/((b^6*c^2 - 2*a*b^
5*c*d + a^2*b^4*d^2)*g^4*x^3 + 3*(a*b^5*c^2 - 2*a^2*b^4*c*d + a^3*b^3*d^2)*g^4*x^2 + 3*(a^2*b^4*c^2 - 2*a^3*b^
3*c*d + a^4*b^2*d^2)*g^4*x + (a^3*b^3*c^2 - 2*a^4*b^2*c*d + a^5*b*d^2)*g^4) + 6*d^3*log(b*x + a)/((b^4*c^3 - 3
*a*b^3*c^2*d + 3*a^2*b^2*c*d^2 - a^3*b*d^3)*g^4) - 6*d^3*log(d*x + c)/((b^4*c^3 - 3*a*b^3*c^2*d + 3*a^2*b^2*c*
d^2 - a^3*b*d^3)*g^4)) - 1/3*B*log(e*(b*x/(d*x + c) + a/(d*x + c))^n)/(b^4*g^4*x^3 + 3*a*b^3*g^4*x^2 + 3*a^2*b
^2*g^4*x + a^3*b*g^4) - 1/3*A/(b^4*g^4*x^3 + 3*a*b^3*g^4*x^2 + 3*a^2*b^2*g^4*x + a^3*b*g^4)

________________________________________________________________________________________

Fricas [B]  time = 0.879277, size = 990, normalized size = 5.41 \begin{align*} -\frac{6 \, A b^{3} c^{3} - 18 \, A a b^{2} c^{2} d + 18 \, A a^{2} b c d^{2} - 6 \, A a^{3} d^{3} + 6 \,{\left (B b^{3} c d^{2} - B a b^{2} d^{3}\right )} n x^{2} - 3 \,{\left (B b^{3} c^{2} d - 6 \, B a b^{2} c d^{2} + 5 \, B a^{2} b d^{3}\right )} n x +{\left (2 \, B b^{3} c^{3} - 9 \, B a b^{2} c^{2} d + 18 \, B a^{2} b c d^{2} - 11 \, B a^{3} d^{3}\right )} n + 6 \,{\left (B b^{3} c^{3} - 3 \, B a b^{2} c^{2} d + 3 \, B a^{2} b c d^{2} - B a^{3} d^{3}\right )} \log \left (e\right ) + 6 \,{\left (B b^{3} d^{3} n x^{3} + 3 \, B a b^{2} d^{3} n x^{2} + 3 \, B a^{2} b d^{3} n x +{\left (B b^{3} c^{3} - 3 \, B a b^{2} c^{2} d + 3 \, B a^{2} b c d^{2}\right )} n\right )} \log \left (\frac{b x + a}{d x + c}\right )}{18 \,{\left ({\left (b^{7} c^{3} - 3 \, a b^{6} c^{2} d + 3 \, a^{2} b^{5} c d^{2} - a^{3} b^{4} d^{3}\right )} g^{4} x^{3} + 3 \,{\left (a b^{6} c^{3} - 3 \, a^{2} b^{5} c^{2} d + 3 \, a^{3} b^{4} c d^{2} - a^{4} b^{3} d^{3}\right )} g^{4} x^{2} + 3 \,{\left (a^{2} b^{5} c^{3} - 3 \, a^{3} b^{4} c^{2} d + 3 \, a^{4} b^{3} c d^{2} - a^{5} b^{2} d^{3}\right )} g^{4} x +{\left (a^{3} b^{4} c^{3} - 3 \, a^{4} b^{3} c^{2} d + 3 \, a^{5} b^{2} c d^{2} - a^{6} b d^{3}\right )} g^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^4,x, algorithm="fricas")

[Out]

-1/18*(6*A*b^3*c^3 - 18*A*a*b^2*c^2*d + 18*A*a^2*b*c*d^2 - 6*A*a^3*d^3 + 6*(B*b^3*c*d^2 - B*a*b^2*d^3)*n*x^2 -
 3*(B*b^3*c^2*d - 6*B*a*b^2*c*d^2 + 5*B*a^2*b*d^3)*n*x + (2*B*b^3*c^3 - 9*B*a*b^2*c^2*d + 18*B*a^2*b*c*d^2 - 1
1*B*a^3*d^3)*n + 6*(B*b^3*c^3 - 3*B*a*b^2*c^2*d + 3*B*a^2*b*c*d^2 - B*a^3*d^3)*log(e) + 6*(B*b^3*d^3*n*x^3 + 3
*B*a*b^2*d^3*n*x^2 + 3*B*a^2*b*d^3*n*x + (B*b^3*c^3 - 3*B*a*b^2*c^2*d + 3*B*a^2*b*c*d^2)*n)*log((b*x + a)/(d*x
 + c)))/((b^7*c^3 - 3*a*b^6*c^2*d + 3*a^2*b^5*c*d^2 - a^3*b^4*d^3)*g^4*x^3 + 3*(a*b^6*c^3 - 3*a^2*b^5*c^2*d +
3*a^3*b^4*c*d^2 - a^4*b^3*d^3)*g^4*x^2 + 3*(a^2*b^5*c^3 - 3*a^3*b^4*c^2*d + 3*a^4*b^3*c*d^2 - a^5*b^2*d^3)*g^4
*x + (a^3*b^4*c^3 - 3*a^4*b^3*c^2*d + 3*a^5*b^2*c*d^2 - a^6*b*d^3)*g^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*ln(e*((b*x+a)/(d*x+c))**n))/(b*g*x+a*g)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.36737, size = 655, normalized size = 3.58 \begin{align*} -\frac{B d^{3} n \log \left (b x + a\right )}{3 \,{\left (b^{4} c^{3} g^{4} - 3 \, a b^{3} c^{2} d g^{4} + 3 \, a^{2} b^{2} c d^{2} g^{4} - a^{3} b d^{3} g^{4}\right )}} + \frac{B d^{3} n \log \left (d x + c\right )}{3 \,{\left (b^{4} c^{3} g^{4} - 3 \, a b^{3} c^{2} d g^{4} + 3 \, a^{2} b^{2} c d^{2} g^{4} - a^{3} b d^{3} g^{4}\right )}} - \frac{B n \log \left (\frac{b x + a}{d x + c}\right )}{3 \,{\left (b^{4} g^{4} x^{3} + 3 \, a b^{3} g^{4} x^{2} + 3 \, a^{2} b^{2} g^{4} x + a^{3} b g^{4}\right )}} - \frac{6 \, B b^{2} d^{2} n x^{2} - 3 \, B b^{2} c d n x + 15 \, B a b d^{2} n x + 2 \, B b^{2} c^{2} n - 7 \, B a b c d n + 11 \, B a^{2} d^{2} n + 6 \, A b^{2} c^{2} + 6 \, B b^{2} c^{2} - 12 \, A a b c d - 12 \, B a b c d + 6 \, A a^{2} d^{2} + 6 \, B a^{2} d^{2}}{18 \,{\left (b^{6} c^{2} g^{4} x^{3} - 2 \, a b^{5} c d g^{4} x^{3} + a^{2} b^{4} d^{2} g^{4} x^{3} + 3 \, a b^{5} c^{2} g^{4} x^{2} - 6 \, a^{2} b^{4} c d g^{4} x^{2} + 3 \, a^{3} b^{3} d^{2} g^{4} x^{2} + 3 \, a^{2} b^{4} c^{2} g^{4} x - 6 \, a^{3} b^{3} c d g^{4} x + 3 \, a^{4} b^{2} d^{2} g^{4} x + a^{3} b^{3} c^{2} g^{4} - 2 \, a^{4} b^{2} c d g^{4} + a^{5} b d^{2} g^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(b*g*x+a*g)^4,x, algorithm="giac")

[Out]

-1/3*B*d^3*n*log(b*x + a)/(b^4*c^3*g^4 - 3*a*b^3*c^2*d*g^4 + 3*a^2*b^2*c*d^2*g^4 - a^3*b*d^3*g^4) + 1/3*B*d^3*
n*log(d*x + c)/(b^4*c^3*g^4 - 3*a*b^3*c^2*d*g^4 + 3*a^2*b^2*c*d^2*g^4 - a^3*b*d^3*g^4) - 1/3*B*n*log((b*x + a)
/(d*x + c))/(b^4*g^4*x^3 + 3*a*b^3*g^4*x^2 + 3*a^2*b^2*g^4*x + a^3*b*g^4) - 1/18*(6*B*b^2*d^2*n*x^2 - 3*B*b^2*
c*d*n*x + 15*B*a*b*d^2*n*x + 2*B*b^2*c^2*n - 7*B*a*b*c*d*n + 11*B*a^2*d^2*n + 6*A*b^2*c^2 + 6*B*b^2*c^2 - 12*A
*a*b*c*d - 12*B*a*b*c*d + 6*A*a^2*d^2 + 6*B*a^2*d^2)/(b^6*c^2*g^4*x^3 - 2*a*b^5*c*d*g^4*x^3 + a^2*b^4*d^2*g^4*
x^3 + 3*a*b^5*c^2*g^4*x^2 - 6*a^2*b^4*c*d*g^4*x^2 + 3*a^3*b^3*d^2*g^4*x^2 + 3*a^2*b^4*c^2*g^4*x - 6*a^3*b^3*c*
d*g^4*x + 3*a^4*b^2*d^2*g^4*x + a^3*b^3*c^2*g^4 - 2*a^4*b^2*c*d*g^4 + a^5*b*d^2*g^4)